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Experimental models of chemically induced autoimmunity have contributed to our understanding of
the development of autoimmune diseases in humans. Heavy metals such as mercury induce a
dramatic activation of the immune system and autoantibody production in genetically susceptible
rats and mice. This autoimmune syndrome is dependent on T cells, which are important for B-Cell
activation and cytokine secretion. Several studies have focused on the roles of T-helper (Th)1 and
Th2 cells and their respective cytokines in the pathogenesis of mercury-induced disease. This article
reviews recent studies that have examined the patterns of cytokine gene expression and where
investigators have manipulated the Thl and Th2 responses that occur during mercury-induced
autoimmunity. Finally, we will discuss some biochemical/molecular mechanisms by which heavy
metals may induce cytokine gene expression. Key words: autoimmunity, cytokines, mercury,
rodent models, T cells. - Environ Health Perspect 1 07(suppl 5):807-810 (1999).
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In most autoimmune patients, the
underlying causes of disease are unknown and
the initial steps leading to loss of tolerance,
activation of autoreactive T cells, and pro-
duction of autoantibodies are poorly under-
stood. Additionally, many endogenous and
exogenous factors contribute to the develop-
ment of autoimmune diseases, including sex
hormones, genetic predisposition, infectious
agents, and exposure to occupational or
environmental pollutants (1,2). Although few
animal models of chemically induced auto-
immunity have been extensively studied, mer-
curic chloride (HgC12)-induced autoimmunity
in rodents presents a well-established but
poorly understood phenomenon.

The fact that mercury induces auto-
immunity in rats and mice is especially rel-
evant, since mercury is also an abundant
environmental pollutant (3). Moreover,
mercury has been used for thousands of
years in mining and manufacturing and can
still be found today in dental amalgam,
skin creams, and fluorescent light tubes
(3). Finally, the specificity of the autoanti-
body response elicited in mercury-treated
mice is virtually identical to that of autoan-
tibodies present in a subset of patients with
scleroderma (or systemic sclerosis), the
human autoimmune disease most fre-
quently associated with exposure to
environmental agents (4).

The most fascinating and compelling
reason for studying this model is that it
remains unknown how such a simple mole-
cule can rapidly induce a loss of tolerance to
specific self-antigens and a dramatic, self-lim-
iting activation of the immune system. Recent
investigations have examined the roles of
cytokine-producing T cells in the induction
and regulation of this syndrome and have pro-
vided a better understanding of mercury-
induced autoimmunity.

Description of the Model
In genetically susceptible mice and rats,
subtoxic doses of HgCl2 (1.0 mg/kg weight)
induce an autoimmune syndrome character-
ized by the production of specific autoantibod-
ies, polyclonal activation of B and T cells,
serum increases in IgGI and IgE, and
glomerulonephritis with renal immune com-
plex deposits (5). These manifestations appear
7-10 days after the beginning of HgCl2 injec-
tions and a single injection may be sufficient to
induce the syndrome. Although most investi-
gators administer HgC12 as a subcutaneous
injection, the route of HgCl2 exposure is not
critical and HgC12 can be given intraperi-
toneally, orally, in drinking water, or
aerosolized (5). Additionally, methyl mercury
or pharmaceutical ointments and solutions
containing organic mercury are equally effec-
tive in inducing immune-type glomerulo-
nephritis in rats, even when these products are
applied on wounds or on normal skin (6). In
susceptible strains, the effects of HgC12 are
dose dependent, with increases in serum IgE
positively correlated with dosage of HgCl2 in
rats (3) and increases in serum IgG antinucleolar
antibodies (ANoA) and IgG immune complexes
correlated with HgC12 dosage in mice (7).

Rats treated with mercury develop
autoantibodies of various specificities,
including antiglomular basement membrane,
anti-double-stranded DNA, antithyroglobu-
lin, antiphospholipid, and antilaminin P1
(8,9). Whether these autoantibodies are sim-
ply a byproduct of the polyclonal activation
seen in these animals or represent an antigen-
specific response remains to be elucidated. In
mice, however, mercury elicits a focused
autoantibody response characterized by anti-
bodies that target specific nucleolar antigens.
Several studies have revealed that many of
these ANoA are directed against fibrillarin, a
34-kDa basic protein that is a constituent of

several nucleolar ribonucleoprotein complexes
involved in preribosomal RNA processing
(10-12).

Mercury-induced disease is self-limiting
and most of the manifestations resolve
spontaneously after 4-5 weeks during a regu-
lation phase, even if HgCl2 injections are
continued. In rats this regulation phase is fol-
lowed by a resistance phase, where rats are
now resistant to further HgCl2 injections (5).
The resistance phase in the rat is mediated by
CD8+ T cells and IL-2-producing CD4+ T
cells (5,13,14). It is unclear whether mice
undergo a resistance phase (15).

Major histocompatibility complex (MHC)
class II genes play a major role in determining
susceptibility to mercury-induced disease.
Inbred Brown Norway (BN) rats of the RT-1 n

haplotype are susceptible to development of
mercury-induced autoimmunity, whereas
inbred Lewis (LEW) rats of the RT-11 haplo-
type are resistant to disease. In mice, expres-
sion of I-AS alleles confers a susceptible
phenotype and expression of I-Ab or I-Ad con-
fers resistance (16). Additionally, non-MHC
genes may also contribute in determining the
nature of glomerulopathy in rats (17), and the
magnitude, specificity, or persistence of the
ANoA response in mice (18). Although
murine mercury-induced disease has been
most often studied in H-2S mice such as
A.SW, SJL, and B1O.S, other strains develop
ANoA, including A.CA (H-2f), DBA/1
(H-2q), and P/J (H-2P)(19).

Th1/Th2 Cells
T cells participate in all phases of mercury-
induced autoimmunity (5). Following acti-
vation, CD4+ T cells can become polarized
to become either T-helper (Th)1 or Th2-
type cells. This polarization is dependent on
a variety of factors, including antigen dose
(20), costimulatory molecules (21), type of
antigen-presenting cell (22), and perhaps
most importantly, the presence of critical
cytokines (23). Interleukin (IL)-12, IL-18,
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and interferon (IFN)-y promote the
appearance of Thl cells (24-26), which in
turn secrete IL-2, IFN-y, and mediate cellu-
lar immunity (27). In contrast, IL-4 biases
T cells toward a Th2 phenotype (23). These
Th2 cells can secrete IL-4, IL-5, IL-6, IL-10,
and IL-13 and participate in humoral,
allergic, and helminthic immunity (28).

Cytokine Gene Expression
in the Model
Although HgC12 induces a profound
activation of the immune system marked by
changes in the production of various
cytokines in susceptible animals, a clear and
comprehensive pattern of cytokine gene
expression during the syndrome has yet to
be determined. Several studies have used
various approaches including semiquantita-
tive reverse transriptase polymerase chain
reaction, Northern blot analysis, and intra-
cellular staining techniques to obtain a lim-
ited picture of cytokine expression in this
model. Among these, investigators have
reported increases of IL-4 and IFN-y mRNA
in splenocytes of mercury-treated BN rats
(29) as well as slight increases in IL-12
mRNA levels in spleen and lymph nodes
from these animals (30). In these studies,
HgCl2 failed to induce increases of cytokines
in resistant LEW rats (29,30). mRNA analy-
sis revealed higher baseline levels of IFN-y
(29) and IL-12 (30) in resistant LEW rats as
compared to those of BN rats, which may
possibly account for this strain's resistance.
Further analysis has demonstrated that treat-
ment of BN rats with HgC12 downregulates
the ex vivo generation of IFN-y-producing
cells in concanavalin A (ConA)-stimulated
splenocytes, and that this downregulation
may be mediated by nitric oxide (31).

Additionally, several studies in the rat
have indicated that HgCl2 can directly trig-
ger naive cells to produce cytokines in vitro.
Unfractionated splenocytes and purified
T cells from BN rats express high levels of
IL-4 mRNA after exposure to HgCl2 in
vitro (32). Similar to in vivo findings, mer-
cury induces IFN-y expression in cells of
both LEW and BN rats but does not induce
increases in IL-4 mRNA in cells from LEW
rats (32). Mast cells ofBN rats also respond
to in vitro mercury exposure with induction

of IL-4 mRNA and enhanced release of
serotonin in response to IgE cross-linking
agents (33). In contrast, mast cells from
resistant LEW rats are less sensitive to medi-
ator release and do not express IL-4 mRNA
in response to exposure to HgCl2 (33).
Thus, cytokine production in response to
HgCl2 in rats differs according to genotype,
and resistance may be due in part to higher
baseline levels of Thl cytokines or a failure
to upregulate Th2 cytokines.

Considerably less is known about the
pattern of cytokine gene expression that
occurs in mercury-treated mice. Earlier studies
demonstrated that B1O.S mice (H-2S) respond
to HgCl2 with a massive proliferation and
activation of their B cells, increased IL-4
mRNA levels, and class switching to IgE,
IgGl, and IgG2a (34). Additionally, mercury
induces dramatic IL-4-dependent increases in
B-cell major histocompatability complex II
expression in susceptible H-2s mice and mod-
erate increases in resistant H-2d mice (34).
Recently, Johansson and colleagues (35)
examined cytokine-producing cells in lymph
nodes of susceptible and resistant mouse
strains receiving HgC12. Susceptible A.SW
mice (H-2s) respond to HgC12 with an early
activation ofT cells, indicated by increases in
IL-2-producing cells and upregulation of the
CD25, CD122, and CD71 activation mark-
ers. This activation was followed by increased
numbers of CD4+ T cells. A.SW mice also
show modest increases in tumor necrosis fac-
tor-a, IFN-y, and IL-4-producing cells at
8-10 days after HgCl2 injections. In contrast,
genetically resistant A.TL mice (H~2tl) have
minimal increases in T cells and no increases
in cytokine-producing cells (35).

Mercury can also activate murine cells
in vitro. In one study by Hu and colleagues,
in vitro exposure to HgCl2 induced high
proliferative responses in splenocytes from
susceptible SJL mice and low proliferative
responses in splenocytes of resistant C57B1/6
mice (H-2b) (36). Additionally, the contin-
uous presence of HgCl2 in vitro induced
IL-2 and IFN-y production, but no IL-4
production, from cells of both H~2S and
H-2b mice. In contrast, pretreatment of cells
with mercury followed by washing resulted
in IL-4 production in cells of susceptible
and resistant mice (36).

Cytokine Manipulations
of the Model
Several studies have employed various
cytokine manipulations or interventions to

further elucidate the mechanisms of disease
(Table 1). These observations indicate a

greater complexity to the disease than was

originally ascribed and suggest independent
regulation of the various manifestations.

Early studies, noting the mercury-induced
increases in IgG 1 and IgE (37,38), suggested a

role for Th2-type T cells in the pathogenesis of
disease, as IL-4 produced by Th2 cells pro-

motes dass switching to these isotypes (2,5).
Ochel and colleagues (39) addressed the role
for this cytokine in mercury-induced auto-

immunity by treating susceptible A.SW mice
(H-2s) with an anti-IL-4 monodonal antibody
(mAb) prior to HgC12 injections. Although the
mercury-induced increases in IgGI ANoA and
total IgE were partially or completely abro-
gated, respectively, levels of IgG2a, IgG2b, and
IgG3 dass ANoA were enhanced (39). These
results suggested that IL-4 was required for
dass switching to the IgGI and IgE isotypes in
this disease but was not essential for the loss of
tolerance to nucleolar antigens.

Recendy, several investigators used different
approaches to block the Th2 component seen in
this syndrome. IFN-y secreted by ThI cells is
important in regulating cellular immune
responses and downregulating Th2 activities
(28). Further, HgCI2 induces IFN-y-producing
splenocytes in mercury-resistant LEW rats (31).
In one study by Doth and colleagues, the effect of
recombinant interferon (rIFN)-y pretreatment

prior to HgCI2 injections was assessed in suscepti-
ble B1O.S mice (H-2s). In resistant B1.D2 mice
(H-2d), HgCl2 induces an IFN-yLdependent sup-

pression of antibody formation to sheep red
blood cells (40). To investigate whether this
immunosuppression was responsible for resis-
tance to HgCI2, rIFN-y was administered to

B10.S mice prior to HgCI2 treatment. This pre-

treatment led to reductions in serum IgE levels
and anti-SRBC antibody levels but filled to pre-

vent ANoA production and immune glomerulo-
nephritis in B1O.S mice (40). Conversely, mAb
neutrlization of IFN-,y in resistant B10.D2 mice
alleviated the mercury-induced immunosuppres-
sion but could not convert the mice to a

mercury-susceptible phenotype (40).

Table 1. Effect of various cytokine manipulation strategies upon the manifestations of mercury-induced autoimmunity.

Treatment Antinucleolar antibodies Serum IgGl Serum IgG2a Serum IgE Renal lgG deposits Reference

Anti-lL-4 IgGl decrease Decreased Unchanged Decreased Not tested (39)
IgG2a and IgG2b increase

IL-4 gene deletion IgGl decrease Decreased Unchanged Decreased Unchanged (47,48)
IgG2a and IgG2b unchanged

IFN-y Unchanged Not tested Not tested Decreased Unchanged (40)
IL-12 Decreased (all subclasses) Decreased Increased Unchanged Unchanged (45)
IFN-y gene deletion Absent Unchanged Decreased Not tested Absent (47)
Abbreviations: IFN--y, interferon-y; IL, interleukin.
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Using an alternate approach, we have tried
to modulate the response to HgC12 observed
in A.SW mice to that of a ThI phenotype by
administration of IL-12 prior to treatment
with mercury. IL-12 is critical for the develop-
ment of the Thl phenotype and for the initia-
tion of inflammatory immune responses (27).
IL-12 also contributes to certain Thl-medi-
ated autoimmune disorders (41,42). Further,
in mice susceptible to Leishmania major infec-
tion, IL-12 administration can bias toward a
protective Thl response (43,44). Thus, IL-12
can serve as a potentially important
immunoregulator of disease outcome. In
A.SW mice, IL-12 treatment dramatically
reduced ANoA titers of all dasses and partially
inhibited the HgCl2-induced increase in IgG1
but had no effect on serum levels of IgE and
renal Ig deposits (45). This last finding was
somewhat unexpected, as induction of IFN-y
by IL-12 can downregulate class switching to
both IgGI and IgE. Nevertheless, IL-12 can
enhance IgE synthesis under certain circum-
stances (46); its ability to influence Th2
cytokine-dependent IgE production varies
according to the immunologic setting. We
also observed that IL-12 further potentiated
the HgCl2 induction of IL-4 (45). This may
be related to our observation that IL-12 had
no effect on serum IgE levels. Specifically,
treatment of mice with both HgCl2 and IL-12
may have led to the development of Th cells
with a mixed ThO phenotype. The balance of
cytokines produced by these cells may thus
explain differential effects of IL-12 on isotype
switching to IgG1 and IgE (45).

Although these studies are important in
their attempt to understand the complex regu-
latory nature of this syndrome, their findings
are somewhat difficult to reconcile with a sim-
ple Thl/Th2 imbalance. Moreover, a some-
what artificial environment may be
introduced in that administration of recombi-
nant cytokines can result in kinetics and dis-
tribution that differ greatly from those of the
proteins secreted in vivo. Similarly, the use of
neutralizing antibodies can result in incom-
plete or short-term inactivation. Recently, we
and others have utilized a targeted gene-
disruption or knockout ap5roach to more
accurately assess the roles of cytokine genes in
this model. These studies have examined
mercury-induced disease in IL-4-deficient
H-2S mice and confirmed findings made in
IL-4 mAb-treated A.SW mice (47,48).
Although mercury-treated IL-4-deficient
mice lack the characteristic increases in
serum IgGI ANoA and total IgGI and IgE,
levels of ANoA of other IgG subclasses are
comparable to mercury-treated wild-type H-
2s mice (47,48). Using IFN-y-deficient H-2S
mice, Kono et al. have observed that mercury
treatment does not elicit ANoA or tissue
lesions in these animals (47). If confirmed,

this novel finding would suggest that IFN-y
plays a hitherto unidentified role in the loss
of tolerance to nucleolar antigens that takes
place in this model.

How Does Mercuric Chloride
Induce Cytokine Expression?
As indicated before, it is unclear how mercury
triggers an activation ofT cells and an upreg-
ulation of cytokine production in genetically
susceptible animals. mercury and other heavy
metals can have mitogenlike effects on cells
and are strong activators of the immune sys-
tem (32,49,50). However, most of the avail-
able evidence, including the presence of
self-reactive and metal-specific cells (51-53)
as well as the specificity of the autoantibody
response (12), suggests that mercury induces
a specific antigen-driven response .

Druet and colleagues recently examined
HgCl2-induced cytokine expression in
autoreactive T-cell lines derived from
mercury-treated LEW rats. These cells can
transfer resistance to naive (BN x LEW)F1
hybrids and produce IL-2, IFN-y, and trans-
forming growth factor-n (14). In contrast,
T-cell lines derived from mercury- and gold-
treated BN rats passively transfer susceptibil-
ity to mercury-induced disease in
CD8-depleted BN rats and produce IL-4
in vitro when cultured with HgC12 (51). This
induction of IL-4 is mediated by protein
kinase C-dependent Ca2+ influxes through L-
type channels (54). In these experiments,
HgCl2 was able to activate protein kinase C
directly and upregulate IL-4 mRNA expres-
sion without de novo protein synthesis.

Several recent lines of evidence suggest a
role for intracellular thiol levels in determin-
ing Thl/Th2 cytokine expression.
Sulfhydryl compounds have many impor-
tant biologic functions, including mainte-
nance of intracellular redox balances (55).
GSH, the most abundant intracellular thiol,
is required for ConA-mediated induction of
IFN-y-producing cells in vitro (56). This
induction is suppressed in BN rats, but not
LEW rats, after exposure to HgCl2 in vivo
(56). Furthermore, N-acetyl-L-cysteine, a
GSH precursor, inhibits IL-4 and IgE pro-
duction by human T cells in vitro (57),
whereas in vivo depletion of GSH in mice
results in decreased IFN-y production and
increased IL-4 production in vitro (58).
Taken together, these studies indicate that
high thiol levels favor development of Thl
responses, whereas low levels favor Th2
responses. A recent study has reported strain-
dependent differences in thiol levels between
LEW and BN rats (59). In particular, CD4+
T cells from LEW rats have higher levels of
total thiols than those of BN rats (59).
Because mercury has a strong affinity for thiol
groups, it is possible that mercury may bind

intracellular thiols, resulting in decreased
thiol levels and a shift toward a Th2 profile in
susceptible animals. Supporting this hypothe-
sis, administration of thiol compounds in
mice prevents development of mercury-
induced IgGI ANoA and IgG1 immune
complexes and reduces serum IgE levels in
SJL mice (60). Strain differences in intracel-
lular thiol levels may contribute to the differ-
ential responses elicited by HgCl2 in either
resistant or susceptible animals, thus explain-
ing predominantly Thl or Th2 patterns of
cytokine expression.

In summary, HgC12-induced autoimmunity
in rodents is a useful model of chemically
related autoimmunity in humans. Much is still
unknown concerning the T-cell-dependent
induction and resolution of this disease. The
conventional view is that HgC12 triggers a Th2
immune response in susceptible strains,
whereas resistant strains develop a Thl
response after mercury treatment. Thus, in this
scenario Th2 cells mediate induction of the
syndrome, and Thl cells are important in the
resolution of disease. Early studies demonstrat-
ing increases in both Th2 cytokine mRNA and
Th2 cytokine-regulated immunoglobulins in
susceptible animals supported this hypothesis.
However, recent examination of the roles of
these cytokines has demonstrated that IL-4
production is not required for HgC12-induced
disease, and the question remains whether Thi
cells participate in both the induction and reg-
ulation of this syndrome. Thl and Th2
cytokines indeed play important roles in the
B-cell activation seen in this model, although it
is likely that loss of tolerance to nudeolar anti-
gens arises by mechanisms independent of
conventional Th l/Th2 regulation. Thus,
interventions such as administration of rIFN-y,
rIL-12, or anti-IL-4 mAb affect isotype
switching and total levels of serum
immunoglobulins but cannot prevent the loss
of tolerance seen in this model.

Future studies on HgCl2-induced
autoimmunity are most likely to focus on
dissecting the biochemical and molecular
pathways by which Hg interacts with self-
antigen to yield an autoimmune response.
Linked to these studies are questions such as:
How does a metal render a self component
immunogenic? and Why are nucleolar anti-
gens (fibrillarin) specifically targeted? Recent
works by several investigators have begun to
address these issues (1,61,62). Further
studies are also needed to clearly elucidate
the pattern of cytokine expression in this
syndrome and to determine their exact
requirement for disease development. The
knowledge gained from studying HgCl2-
induced autoimmunity in rodents will con-
tribute to our understanding of the
relationships between genetics, environment,
and human autoimmunity.
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